Some linear preserver problems on block triangular matrix algebras
نویسندگان
چکیده
منابع مشابه
Some General Techniques on Linear Preserver Problems
Several general techniques on linear preserver problems are described. The first one is based on a transfer principle in Model Theoretic Algebra that allows one to extend linear preserver results on complex matrices to matrices over other algebraically closed fields of characteristic 0. The second one concerns the use of some simple geometric technique to reduce linear preserver problems to sta...
متن کاملLinear Preserver Problems
Linear preserver problems is an active research area in matrix and operator theory. These problems involve certain linear operators on spaces of matrices or operators. We give a general introduction to the subject in this article. In the first three sections, we discuss motivation, results, and problems. In the last three sections, we describe some techniques, outline a few proofs, and discuss ...
متن کاملSome Linear Preserver Problems on B(h) concerning Rank and Corank
As a continuation of the work on linear maps between operator algebras which preserve certain subsets of operators with finite rank, or finite corank, here we consider the problem inbetween, that is, we treat the question of preserving operators with infinite rank and infinite corank. Since, as it turns out, in this generality our preservers cannot be written in a nice form what we have got use...
متن کاملFactorization of Block Triangular Matrix Functions in Wiener Algebras on Ordered Abelian Groups
The notion of Wiener-Hopf type factorization is introduced in the abstract framework of Wiener algebras of matrix-valued functions on connected compact abelian groups. Factorizations of 2 x 2 block triangular matrix functions with elementary functions on the main diagonal are studied in detail. A conjectl,lre is formulated concerning characterization of dual groups with the property that every ...
متن کاملDerived Equivalent Mates of Triangular Matrix Algebras
A triangular matrix algebra over a field k is defined by a triplet (R, S, M) where R and S are k-algebras and RMS is an SR-bimodule. We show that if R, S and M are finite dimensional and the global dimensions of R and S are finite, then the triangular matrix algebra corresponding to (R, S, M) is derived equivalent to the one corresponding to (S, R, DM), where DM = Homk(M, k) is the dual of M , ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2003
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(03)00365-3